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ABSTRACT 

We study ball-homogeneity, curvature homogeneity, natural reductivity, 
conformal flatness and (p-symmetry for three-dimensional contact metric 
manifolds. Several classification results are given. 

1. I n t r o d u c t i o n  

A Riemannian  manifold such tha t  the volume of all sufficiently small geodesic 

balls only depends on the radius is called a ball-homogeneous space [23]. Locally 

homogeneous spaces are trivial examples and, up to now, no other  examples are 

known. This raises the question whether  all bal l-homogeneous spaces are loca.lly 

homogeneous or not. Several affirmative answers have been obtained for special 

classes of manifolds but  the general case remains open [12], [13], [14], [15]. Sur- 

prisingly, even in dimension three, a general answer is not  known. This motivates  

the s tudy  of three-dimensional  ball-homogeneous contact metric manifolds which 

we star t  in this paper.  In particular,  we consider the class of contact  metr ic  
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manifolds for which the characteristic vector fe ld  is an eigenvector field of the 

Ricci tensor. This is a condition which naturally appears in many problems and 

examples. Based on the results about three-dimensional homogeneous contact 

metric manifolds obtained in [28], we derive in Section 3 the classification of 

the above mentioned class of spaces and show that  this class is formed by the 

spaces which are locally isometric to a unimodular Lie group equipped with a 

left-invariant contact metric structure. We also show that  ball-homogeneity may 

be replaced by curvature homogeneity, that  is, the eigenvalues of the Ricci tensor 

are constant. 

In Section 3, we also make a further study of these unimodular Lie groups to 

determine which of them have a cyclic-parallel Ricci tensor. As a special case and 

using the Webster scalar curvature, we determine the class of naturally reductive 

ones. 

Based on the derived formulas and results, we classify in Section 4 the 

conformally fiat three-dimensional contact metric manifolds satisfying the 

already mentioned property for the characteristic vector field. This extends a 

result obtained by Tanno in [31]. 

Finally, in Section 5, we determine all three-dimensional locally Q-symmetric 

spaces, that  is, the contact metric spaces such that  the reflections with respect 

to the integral curves of the characteristic vector field are local isometries. This 

completes a result of [28]. 

2. P r e l i m i n a r i e s  

In this section we collect some basic facts about  contact metric manifolds. All 

manifolds are assumed to be connected and smooth. 

A (2n+  1)-dimensional manifold M has an almost contact structure if it admits  

a vector field ~ (the characteristic field, a one-form ~ and a (1, 1)-tensor field 

satisfying 

(2.1) U ( ~ ) = I ,  ~ 2 = _ i d + w ® ~ .  

Then one can always find a Riemannian metric g which is compatible with the 

structure, that  is, such that  

(2.2) g(~X,  ~Y)  = g(X, Y)  - ~?(X)~?(Y) 

for all vector fields X and Y. (~, v], T,g) is called an almost contact metric 

structure and (M, ~, U, ~, g) an almost contact metric manifold. If additionally 
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dTI(X, Y )  = g(X,  ~Y )  holds, then (M, ~, 7, ~, g) is called a contact metric mani- 

fold. 

In what  follows we denote  by V the Levi Civi ta  connection and by R the 

corresponding R iemann  curvature  tensor given by 

R x v  = V[x,vl  - [Vx,  Vv]  

for all smoo th  vector  fields X, Y. p denotes the Ricci tensor of type  (0, 2) and Q 

the corresponding endomorph i sm field. We denote  the scalar curvature  by r and 

put  a = p ( ~ , - ) l k e r w  

On an a lmost  contact  metr ic  manifold we have 

(2.3) ~ = 0 ,  r / o ~ = 0 .  

Moreover,  if £ denotes the Lie differentiation, we denote by ~ and h the opera tors  

defined by 
1/2 h =  ~ ~(p, g X =  R(~,X)~,  T =  E~g. 

These  (1, 1)- type tensors h and g are symmetr ic  and satisfy 

(2.4) h ~ = 0 ,  ~ = 0 ,  t r h = 0 ,  t r h ~ = 0 ,  h ~ = - ~ h ,  

and, moreover,  we have 

V x {  = -qoX - ~ohX, 

Veto = O, 

(2.5) tr  £ = p(~, ~) = 2n - tr  h 2, 

~ t ~  - ~ = 2 ( ~  2 + h2),  

V~h = ~ - ~t~ - ~h  2. 

This  last  relat ion appears  in [6] and for all the other  formulas we refer to [3], 

where also more  informat ion may  be found abou t  contact  geometry.  

A contact  metr ic  space is said to be a K-contact manifold if ~ is a Killing vector  

field, tha t  is, ~- = 0 or, equivalently, h = 0. Moreover, an a lmost  contac t  metr ic  

s t ruc ture  (~, 7, ~, g) is called a Sasakian s t ruc ture  if and only if 

(2.6) (Vx )Y = g(x,  - 

Any Sasakian  manifold is K-con tac t  and the converse also holds when n = 1, 

t ha t  is, for three-dimensional  spaces. 
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For a three-dimensional  contact  metric manifold, the Webster scalar curvature 

W is given by [17] 

(2.7) 
1 1 

l ( r  - p(~,{) + 4 )  = g(r + 2 + ~11r112). W = g  

The  length Ilrll is the torsion invariant introduced in [17]. 

Next, let (M, {, 77, ~o,g) be a three-dimensional contact  metric manifold and 

m a point  of M.  Then  there exists a local or thonormal  basis {{, e, ~oe} in a 

ne ighborhood of m. Now, let b/1 be the open subset of M where h ~ 0 and let 

g/2 be the open subset of points m E M such that  h = 0 in a neighborhood of m. 

~/1 [--J ~a/2 is an open dense subset of M.  On ~/1 w e  put  he = he and hence, from 

(2.4), we have h~oe = -Aqoe where A is a non-vanishing smooth  function which 

we suppose to be positive. Then  we have 

V ( ~ e  = ae, 

v ~  = - ( ~  + 1)~e,  v ~  = - ( ~  - 1)e, 

(2.8) 

Ve~e ---- - ~ { ( ~ e ) ( ~ )  + ~(e)}e + (~ + 1)~, 

V~oee = - ~ { e ( A )  + a(~oe)}~oe + (A - 1)¢, 

where a is a smooth  function. 

Proof." For any arbi t rary  three-dimensional contact  metric space we have [32] 

LEMMA 2.1: On Ltl we have 

~Y~e = -aqoe, 

(Vxqo)Y = g ( X  + hX ,  Y ) (  - ~ ( Y ) ( X  + h X )  

for all vector fields X,  Y. Put t ing  X = e, Y = { and X = ~oe, Y = {, we obtain  

(Veqo)( = - ( A  + 1)e, ( V ~ o ) (  = (k - 1)~oe. 

This yields 

~ v ~  = (~ + 1)e, 

and hence, with (2.1), we get 

~v~( = -(~- l)~e 

V ~  = - ( A  + 1)~0e, V~o~ -- - ( A  - 1)e. 
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Next,  we recall t ha t  the  curvature  tensor  of a three-dimensional  R iemann ian  

manifold satisfies 

R ( X ,  Y ) Z  =g(X,  Z ) Q Y  - g(Y, Z ) Q X  - g(QY, z ) x  + g(QX,  z ) Y  
(2.9) r 

2 {g(X' Z ) Y  - g(Y, Z ) X } .  

P u t t i ng  X = e, Y = ~e, Z = ~, we have 

(2.10) R(e,  ~e)~ = g(Qe, ~)qoe - g(Q~e, ~)e = a(e)qoe - a (pe )e .  

On the o ther  hand,  we have [27, Proposi t ion 3.1,(i)] 

(2.11) R(e, pe)~ = ~ ( V ~ h ) p e  - ~ ( V ~ h ) e .  

Now, by a s t ra ight forward  computa t ion  and using V ~  = 0, we get 

V~e = - a p e ,  

(2.12) V~e = b~e, 

V~oe¢fle = ce, 

From (2.11) we then  obta in  

V~(fle = ae, 

V ~ e  = -be  + (A + 1)~, 

V ~ e  = - c ~ e  + (~ - 1)~. 

and,  compar ing  this wi th  (2.10), we have 

2Ab = ~(e) + (~e)(A), 2Ac = ~(~e)  + e(A). 

Now, the  required formulas  (2.8) follow at  once. II 

Next ,  we derive a useful formula  for V~h. 

PROPOSITION 2.1: On btl we have 

(2.13) V~h = 2ah~ + ~(A)s 

where s is the (1, 1) - type  tensor deigned by s~ = O, se = e, sqoe = -qoe. 

Proof: Using (2.4), (2.5) and (2.8), we get 

(V(h)~  = 0 = (2ah~ + ~(A)s)~, 

(V~h)e = - 2 a A ~ e  + ~(A)e = (2ah~ + ~(A)s)e, 

(V~h)~e  = - 2 a h e  - ~(£)~e = (2ahqo + ~(A)s)ge. | 

Note  t h a t  (2.13) holds tr ivially on / t2  since h = 0. 
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Remark 2.1: V~h = 0 implies a = {(A) = 0. In this case, the formulas (2.8) are 

given in Proposi t ion  3.1 of [18]. 

Finally, we note tha t  it follows from [27] tha t  the Ricci opera tor  Q on a three- 

dimensional  contact  metr ic  space is given by 

where  

1 
(2.14) a = ~ r -  1 + A 2, 

Using (2.13), we get 

(2.15) 

1 
j3 = - { r  + a - 3A 2. 

Q = a I  + f i t  ® ~ + 2ah + ~(A)~s - cr(qo 2) ® ~ + a(e)~ ® e + a(~oe)77 ® ~oe, 

and hence 

Q~ = (~ + 9)~ + o(~)e + .(~e)ve, 

(2.16) Qe = a(e)~ + (a + 2aA)e + ~(A)~oe, 

Q~oe = a(qoe)~ + ~(A)e + (a  - 2aA)qoe. 

Note  t ha t  a = 0 if and only if ~ is an eigenvector of Q. 

Moreover,  since T(X, Y) = 2g(~oX, hY) [27], we have 

1 (2.17) W = g ( r  + 2 ( 1 +  A2)), A _ Ilrl[ 
2V~" 

3. B a l l -  a n d  c u r v a t u r e  h o m o g e n e i t y ~  n a t u r a l  r e d u c t i v i t y  

In this section we consider different kinds of homogenei ty  and s tar t  with 

Definition 3.1: A contact  metr ic  manifold (M, ~,rh q0,g) is said to be  homoge- 

neous if there  exists a connected Lie group of isometrics act ing t ransi t ively on M 

and leaving r / invar ian t .  I t  is said to be locally homogeneous if the pseudogroup 

of local isometrics acts t ransi t ively on M and leaves 77 invariant.  

Note  t h a t  a three-dimensional  locally homogeneous contac t  metr ic  manifold is 

locally isometr ic  to a homogeneous  one. 

Homogeneous  contact  metr ic  manifolds of dimension 3 have been s tudied in 

[28] by using Milnor 's  classification of Lie groups [24]. We recall the  basic result.  
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THEOREM 3.1: Let ( M , ~ , ~ , ~ , g )  be a three-dimensional, simply connected, 

homogeneous contact metric manifold. Then M is a Lie group and (7, g) is a 

left-invariant contact metric structure. More precisely, we have the following 

classification in terms of the Webster scalar  curvature W and the torsion invari- 

ant  11711: 
(1) If  G is unimodular, then it is one of the following Lie groups: 

the Heisenberg group when W : I[Tll : 0; 

the 3-sphere group SU(2) when 4 v ~ W  > I[~ll; 

the group E(2) ,  that is, the universal covering of the group of rigid 

motions of Euclidean 2-space, when 4v/2W : II~ll > o; 

the group  SL(2, R) when - I t , l l  # 4 v ~ W  < II~ll; 

the group E(1,  1) of rigid motions of Minkowski 2-space when 4 v ~ W  

= -II~ll < o. Moreover, in all these cases we have ~ : O. 

(2) I f  G is non-unimodular, its Lie algebra is given by 

[e l ,  e2] = o~e2 ~- 2~, [el ,  ~] = ")'e2, [e2, ~] = 0, 

where ~ # 0, e l ,e2  : ~oel E ker~/ and 4v/2W < 1[7l[. Moreover, if 

~/ = 0 (or equivalently, ~ = 0), then the structure is Sasakian and 

W = -ol2/4. 

Note tha t  it is proved in [21] tha t  the non-unimodular  Lie group satisfying a = 0 

is isometr ic  to a un imodula r  group EL(2, IR). We also refer to [28] for the  explicit 

cons t ruc t ion  of homogeneous  contact  metr ic  s t ructures  on these Lie groups.  

Now, we tu rn  to the  considerat ion of ball-homogeneous contact  metr ic  spaces 

of dimension 3 as ment ioned in the Introduct ion.  We note tha t  ba l l -homogenei ty  

implies the cons tancy of an infinite number  of scalar curvature  invariants.  See 

for example  [13]. In part icular ,  r and [[p[I 2 must  be constant .  Now, we prove 

THEOREM 3.2: A three-dimensional contact metric manifold (M, ~, 7, ~, g) is 

locally isometric to a unimodular Lie group equipped with a left-invariant contact 

metric structure if and only if it is ball-homgeneous and a = O. 

Proof." The  "only if '  pa r t  follows from the local homogenei ty  of the manifold 

and f rom T h e o r e m  3.1. 

To prove the "if" par t ,  we first consider the case M =/, /2,  t ha t  is, (~, 7/, ~, g) 

is a Sasakian s tructure.  Since r is constant ,  it then  follows tha t  M is locally 

V-symmetr ic  [34], and hence locally homogeneous [30]. The  result then  follows 

again f rom Theo rem 3.1. 
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Next,  assume tha t  H1 is not emp ty  and let {{, e, 7)e} be a basis as in Section 

2. Since a = 0, (2.16) yields 

Q~ = 2(1 - A2)~, 

(3.1) Qe = (c~ + 2aA)e + {(A)~oe, 

Qqoe = {(A)e + (c~ - 2aA)~oe. 

Fnrther ,  we have the well-known formula  

(3.2)  x(r) = X) 
i=1 

for any vector  field X and any n-dimensional  Riemannian  manifold.  Here, 

{ei,i = 1 , . . .  ,n}  is an a rb i t ra ry  o r thonormal  basis. In our case, f rom (3.1), 
(2.s), (2.5), we get 

(V~Q){ = - 4A{(A){, 

(V~Q)e ={e(~ + 2a~) - l (~e)(~)~(~)}e + {~(~(~)) + 2 a ( ~ ) ( A ) } ~  

+ (A + 1)~(A)~, 

+ (~ - 1)~(~)~. 

From these relat ions and (3.2) we then  get 

(3.3) 

(3.4) 

(3.5) 

~ (r) = - 2 a ~ ( a ) ,  

~e(r) = e (a  + 2aA) - I~(A)(~e)(A)  + (~oe)~(A) - 2ae(A), 

~(~oe)(r) ---- (~oe)(a - 2aA) - ~-~(A)e(A) + e~(A) + 2a(qoe)(A). 

Since r is constant  and A % 0, (3.4) and (3.5) yield 

(3.6) e(A) + e(a) = 0, (~oe)(A) - (qoe)(a) = O. 

Next,  we compute  Hp[[ 2 from (2.16) taking into account  tha t  ~(A) = 0 follows 

f rom (3.3). We get 

IlPl[ 2 = 4(1 - A2) 2 + 2(2 - 1 + A2) 2 + 8a2A 2. 
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Since r and  [[p[]2 are  cons tant ,  we then  get  

(3.7) 6A 4 q- 2( r  -- 6)A 2 + 8a2A 2 = c o n s t .  

Taking the  der ivat ive  of (3.7) wi th  respect  to e yields 

e(A){12A 2 + 2(r  - 6) - 8a)~ + 8a 2} = 0 

and this  implies  e(A) = O. Indeed,  if e(),) ¢i 0 in a ne ighborhood,  we have 

12A 2 + 2 ( r -  6) - 8aA + 8a 2 = 0 

and a new dif ferent ia t ion in the  di rect ion of e gives 4~ - 3a = 0. Der iv ing  

once aga in  and using (3.6) then  gives e(A) = 0, which con t rad ic t s  the  hypothes is .  

Using (3.6), we then  get  e(A) = e(a) = 0. A s imilar  reasoning also gives (~oe)(A) = 

(qoe)(a) = 0. Moreover,  from (2.8) we get  24 = [e, qoe], and  hence we ob t a in  

{(a)  = 0. All  this  implies  tha t  ~ and a are local ly cons tan t  on g/1. Since 

is cont inuous,  we get  from this t ha t  M = U1, and  hence /~ and a are  g lobal ly  

cons tant .  

So, from (2.8), we ob ta in  

[e ,  =  14, = c 2 e ,  [4,  = 

where Cl = 2, c2 = 1 - ~ - a, c3 = ~ + 1 - a are  constants .  F rom this  we m a y  

conclude t ha t  (M, {, r/, ~o, g) is local ly isometr ic  to a un imodu la r  Lie g roup  wi th  

a lef t - invar iant  contac t  met r ic  s t ructure .  See for example  [3a, p. 10] and  [24] or 

T h e o r e m  3.1. | 

R e m a r k  3.1: We note  t ha t  the  proof  of Theo re m 3.2 shows t ha t  if a = 0 and  

r = coast . ,  then  {~, e, ~oe) is a basis of eigenvectors  of Q on/ ' /1.  

As a l r eady  ment ioned  in the  In t roduc t ion ,  a th ree -d imens iona l  mani fo ld  is 

curvature homogeneous if the  eigenvalues of the  Ricci ope ra to r  Q are  cons tan t .  

Then  r and  llpll 2 are  cons tant .  The  proof  of The o re m 3.2 then  shows the  va l id i ty  

of the  following result .  

THEOREM 3.3: Let  (M,  4, r / , ~ , g  ) be a three-dimensional contact metr ic  

manifold.  Then  the following s ta tements  are equivalent: 

(i) ( M , ~ , 77, ~ , 9) is locally isometric to a unimodutar  Lie group equipped wi th  

a left-invariant contact metr ic  structure; 

(ii) ( llJ, ~, *1, ~o, g) is ball-homogeneous and a = O; 
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(iii) (M, ~, 7, ~, g) is curvature homogeneous and a = 0; 

(iv) ~ -- 0 and r and Ilpl[ 2 are constant on (M,~,~ ,~ ,g) .  

Note t ha t  the case a = 0 and A constant,  t ha t  is, ~ is an eigenvector of Q with  

constant  eigenvalue, has been t rea ted  in [20]. 

Now, we want  to determine the natura l ly  reductive three-dimensional  contac t  

metr ic  manifolds.  Since na tura l  reduct ivi ty  implies tha t  p is a Killing tensor,  

t ha t  is, p is cyclic-parallel [22], we first consider this last condit ion and prove 

THEOREM 3.4:  Let ( M, ~, 7, ~, g) be a three-dimensional contact metric mani- 

fold. Then cr = 0 and p is cyclic-parallel if  and only if  the manifold is locally 

isometric to a unimodular Lie group G equipped with a left-invariant metric 

structure and satisfying one of the following conditions: 

(i) ~- = 0 (that is, the structure is Sasakian). Then G is the Heisenberg group 

H3 i f W  = 0, SU(2) i f W  > 0 or SL(2, R) i f W  < O; 

(ii) T ~ 0 and W = 1 + ][TI]/4x/~. In this case G = SU(2); 

(iii) "r ~ 0 and W = 1 -[]7-[I/4v/2. Then G is SU(2) ifl[~- H < 2v/2, S-L(2,]K) if  

[]7]] > 2v/2 or/~(2) if  ]lZ][ = 2V~. (In this last case, g is a fiat metric.) 

Proof: First ,  assume ~ -- 0 and p cyclic-parallel. If  ~- = 0, the s t ruc ture  is 

Sasakian.  Moreover,  since p is cyclic-parallel, r is constant .  Hence, (M, ~, 7, ~, g) 

is locally homogeneous  [30], [34]. So, Theorem 3.1 implies tha t  M is locally 

isometr ic  to a Lie group equipped with a left-invariant contact  metr ic  s t ructure.  

More precisely, we have G = Heisenberg group H3 if W = 0, G = SU(2) if W > 0 

and G = SL(2,]~) if W < 0. 

Next,  let H1 be non-empty.  From (2.15) and Remark  3.1 we then  get ~(A) = 0 

and Q : a I  + flit ® ~ + 2ah on H1 and, using (2.8), we obta in  

= o ,  = o ,  

= 

(V¢p)(e,e) = e(A 2 + 2aA), (V~p) (~e ,~e )  = (~e)(A 2 - 2aA), 

(V~p)(e ,e)  = 2A~(a), ( V ~ ) ( e , ~ )  = 0. 

Since p is cyclic-parallel,  these relations yield 

e(A) = 0, (~e)(A) = 0, 

e(£ 2 + 2 a A ) = 0 ,  (~oe)(A 2 - 2 a ) ~ ) = 0 ,  

¢(a)  -- 0. 

Hence, A and a are locally constant  on L/1 and, as in the proof  of T h e o r e m  3.2, 

we get tha t  (M, ~, 7, ~, g) is locally isometric to a un imodular  Lie group equipped 

with  a left- invariant  contact  metr ic  s tructure.  
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Now, we express tha t  p is cyclic-parallel by using the Webster scalar curvature.  

Therefore, we note tha t  formula (5.2) of [26] yields 

r = 4 ( 1 -  A 2) + 2H, 

where H = .q(R(e, ~e)e, ~ve) denotes the 9-sectional curvature. But  from (2.8) 

we get, when a = 0 and A = const., 

R(e, ~ve)e = (A 2 - 1 - 2a)~e, 

and hence H = A 2 - 1 - 2a, which implies 

r A2 (3 . s )  2a  = - ~  + 1 -  . 

Furthermore,  from (2.14), (2.15), (2.17) and (3.8) we then get 

Q = 2 ( 2 W -  1)I  + [ 2 -  4W + 2(1 - A2)]7/®~+ 2(1 - 2W)h. 

It is now easy to check tha t  the only non-vanishing components  of Vp  are given 

by 
(Vep)(e, pe) = -4A(1  - 2W) 2, 

(V~p)(~,~e) = 2(A + 1 ) 2 ( 2 W -  2 + A), 

(V~ep)(~,e) = 2 ( A -  1 ) 2 ( - 2 W  + A + 2). 

Hence, if p is cyclic-parallel, we have 2W = 2 + A. Then, from Theorem 3.1 we 

get the required results concerning the group G. 

To finish tile proof, we show the existence of these left-invariant contact  metric 

s t ructures  on H3, SU(2), S~'L(2, ~) and /~(2)  satisfying the conditions for W and 

[IT[I. To see this, we note tha t  the Lie algebra for these groups has the form 

[e2, e3] = A~e~,  [e3, e l i  = A2e2, [e~, e~] = ~3e3 ,  

where A1, A2, A3 are constants  [24]. Let {01, 02, 03 } be the dual basis of {el, e2, e3}. 

Then  dO 1 = -A102 A 03 and hence, if A1 ~ 0, ~ = 01 is a contact  form. For 

A1 = 2, the Riemannian  metric defined by g(ei, e j )  = ~ij ,  i , j  = 1, 2, 3, satisfies 

&? = g( . ,~ . )  where ~o is defined by pel  = 0,~oe2 = e3,~e3 = - e 2 .  So, g is a 

compat ible  metric. Moreover, we have [28] 

2W - A2 + A3 
2 ' I1~-II = v ~ ( ~ 3  - ~2) .  
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Following Milnor 's  classification (see also Theorem 3.1), the cases ~ = )~a, As = 

A1 = 2 and Aa = )~1 = 2 correspond to (i), (ii) and (iii), respectively. This 

completes the proof. | 

In [1], it has been proved that  a locally homogeneous three-dimensional  

Riemannian  manifold with cyclic-parallel Ricci tensor is locally isometric to a 

natural ly  reductive homogeneous space. Hence, it follows from Theorem 3.4 tha t  

a three-dimensional  contact  metric space with cyclic-parallel Ricci tensor and 

cr = 0 is locally isometric to a naturally reductive space. Using the Webster  

scalar curvature,  we have the following more specific result. 

THEOREM 3.5: Let (M,~,ThCP,9) be a three-dimensional, simply connected, 

complete contact metric manifold. Then we have 

(i) if  T = 0, then (M, 4, 7?, ~, g) is naturally reductive if and only if W is 

constant; 

(ii) if  r ¢ O, then (M, ~, 7], ~, g) is naturally reductive if  and only if a = 0 and 

W = 1 4-ll~-ll/4v~ = constant. 
I f  ( M, ~, ~7, ~, g) is not simply connected or complete, then "naturally reductive" 

has to be replaced by "locally isometric to a naturally reductive space". 

Proo~ First, let r = 0, tha t  is, the s tructure is Sasakian. Then  8W = r 4- 2. 

Hence, W is constant  if and only if the scalar curvature is constant .  If  r is 

constant ,  then the manifold is locally ~a-symmetric and hence locally isometric 

to a natural ly  reduetive space [8]. The converse is trivial. 

Next, let T :/: 0. If (M, 4, 77, ~, g) is natural ly reductive, then p is cyclic-parallel. 

Moreover, it follows from [2] tha t  a = 0. The value of W then follows from 

Theorem 3.4. Conversely, let ~ = 0 and W = 1 + 11~-ll/4v~ = constant .  (2.17) 

implies tha t  A is constant ,  and hence, also r. Furthermore,  (3.8) implies tha t  a 

is constant .  Now, as in the proof of Theorem 3.2, it follows tha t  the manifold is 

a homogeneous contact  metric space and then the result follows from Theorem 

3.4. I 

4. C o n f o r m a l l y  f lat  c o n t a c t  m e t r i c  m a n i f o l d s  

In [31], Tanno proved that  a conformally flat K-contac t  space has constant  

sectional curvature  4-1. See [25] for the Sasakian case and dimension > 5. On 

the other  hand,  it is shown in [4] tha t  there exist three-dimensional conformally 

flat contact  metr ic  spaces which are not real space forms. Now we show tha t  this 

cannot  occur when a = 0. 
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THEOREM 4.1: A three-dimensionM con formally  fiat contact metr ic  space with 

cr = 0 has constant  sectional curvature 0 or 1. 

P r o o f  First,  let M = 5/2. Then  the result follows from Tanno's  work [31]. 

Next,  suppose/2/1 is not empty. In what  follows we shall show tha t  A and a are 

constant .  It then follows again tha t  the manifold is locally homogeneous.  Since 

it is conformally flat, it must  be locally symmetr ic  [29]. Then  the result follows 

from [7]. 

To prove tha t  A and a are constant ,  we take the usual basis {~, e, qve} and put  

el = ~, e2 = e, e3 = qoe. Using the notat ional  convention Pij = p(ei, ej) ,  V i p j k  = 

( V ~ p ) ( e j ,  ek), a straightforward computa t ion  then yields 

V l P l l  ~" --4/~(/~)~ 

(4.1) 

Vlf l l 2  : V l f l l3  = 0, 

VlP22 = ~(P22) + 2ap23, 

VlP33 = ~(P33) - 2ap23, 

V 2 P u  = e ( p n ) ,  

VeP12 = (1 -t- A)P23, 

V2P13 = (1 ~- /~)(P33 -- P11), 

1 
V2P33 ~- e(f133)q- X (~oe)()~)P23, 

V2P23 = e(p23) + 2a(~oe)(A), 

V 3 P l l  = ( ~ e ) ( P l l )  , 

Vzpx2 = (I  - ~ ) ( p H  + p22), 

V3P13 = ()~ -- 1)P23, 

1 
V3P22 = (~e)(P22) + ~e(.X)p23, 

V3P23 = (~ge)(P23) -- 2ae(/~). 

We shall also use extensively the components  Pij given by (2.16). 

Now, since (M, g) is conformally fiat, we have 

1 
(4.2) Vkp i j  - -  V j P i k  : - ~ ( ~ i j V k r  - -  5ikVir) ,  i , j , k  = 1,2,3.  

Hence, from (4.1) and (4.2) we get 

~ ( r )  = ~(P22) + ( 2 a -  - 1)P23, A 

(4.3) 
~ ( r )  = ~(fl33) "4- (1 - A - 2a)P23, 

2P l l  = (1 --/~)P22 + (1 +/~)P33. 
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From these relations, we obtain  

~(f l22 --  P33)  = 2 (1  --  2 a ) P 2 3  , 

(4.4) 1 
~(p22 + p33) = 2~p23 + ~ ( r ) .  

Hence, we have 

~(r) = ~(pll  + p~2 + p33) = ~(pH) + 2~p23 + ~(~).  

Using (2.16), we then  get ~(r) = -4A~(A) = ~(Pu)-  Hence, ~(P22 + P33) = 0. 

Now, we derive (4.3) with respect  to ~ and use (4.4) to get ~ (Pn)  = -A~(),) .  

This  yields ~(A) = 0, and hence we have ~(r) = ~(Pll)  = ~(P22) = ~(P33) = 0. 

Since 0 = ~(Pz2) = ~(a  + 2aA) = 2A~(a), we also get ~(a) = 0. 

Fhr ther ,  f rom V 2 p u  - V l P 1 2  : ¼V2r we get 

e(pH) = ¼~(~) (4.5) 

a n d  f rom V2P23 --V3f123 = 

P23 = 0,  

¼V2r we obtain,  taking into account  tha t  ~(A) = 

-~(r) = ~(p3~) + 2a~(~) 

1 = ~(,-) + 2~(~) - 2~(a),  

and so 

1 2A{e(a) e(A)}. ~e(r)  = 

But with (4.5) we have ~e(r) = e(Pl l )  = --4)~e(~), and hence e(A) + e(a) = O. 
Next,  f rom (4.3) we obta in  

Derive this with respect  to e. This  gives 

e(r) = - 4 A ( 2 a  - A)e(A) 

which, together  with ¼e(r) = -4Ae(A),  yields 

(2a - A - 4)e(A) = 0. 
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From this it follows that  e(A) = 0. Indeed, for e(A) ¢ 0 in a neighborhood,  we 

get A = 2a - 4 and differentiation then gives e(A) = 0, which is a contradiction.  

So, we must  have e(X) = e(a) = O. 

1 r = 1E73r , In a similar way and using \73flll -- ~.71P13 = ~ 7  3 and V3P22 - V 2 P 2 3  

we get (pe)(A) = (g)e)(a) = O. 

All this implies tha t  A and a are constant  and this completes the proof. | 

It is well-known that  the Ricci tensor of a three-dimensional manifold is a 

Codazzi  tensor if and only if it is eonformally fiat and has constant  scalar curva- 

ture (see (4.2)). Hence, from Theorem 4.1, we obtain at once 

TttEOREM 4.2: A three-dimensional  contact  metr ic  space with a = O, and such 

that  i ts Ricci  tensor is a Codazzi  tensor, has constant  sectional curvature  0 or 1. 

5. T h r e e - d i m e n s i o n a l  l oc a l l y  p - s y m m e t r i c  s p a c e s  

For a Sasakian or a / f - c o n t a c t  manifold, local symmet ry  implies tha t  the manifold 

has constant  curvature  1 [25], [31]. For this reason, locally p - s y m m e t r i c  spaces 

have been introduced in [30] and, in [8], it has been shown tha t  they may be 

defined as Sasakian manifolds such that  the local reflections with respect to the 

integral curves of the characteristic vector field are isometrics. Many examples 

are known and their classification has been treated in [19]. Using this proper ty  

as definition, locally qo-symmetric spaces have also been introduced for contact  

metric spaces in [11]. In this section we shall derive two new characterizations 

for the three-dimensional  contact  metric case. 

First, we have 

THEOREM 5.1: A three-dimensional  contact  metr ic  manifold (M,~ ,7 ,  qo, g) is 

locally 99-symmetric i f  and only  i f  it is locally homogeneous  and a = O. 

P r o o £  First, suppose tha t  the manifold is Sasakian. Then  the result is well- 

known [30], [34]. 

Next, suppose tha t  the contact  metric s t ructure on M is not Sasakian and let 

M be locally ~o-symmetric. Since the local reflections are isometrics, we have 

p(~, u) = 0 for any u E kerr], and hence a = 0. Moreover, we must  also have 

V~r  = 0, 

u) = 0, 

= 0 .  

Now, we show tha t  this implies tha t  A and a, for the usual basis {~, e, ~e} on UI, 

are constant .  This implies the local homogeneity. 
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First ,  we have 0 = (V~p)({,{)  = -4,ke(,k) and so e(A) = 0. Similarly, 

(V~oeP)(~,{) = 0 implies (~e)(A) = 0. This,  (2.8) and a = 0 give 

V ~ q o e = ( A + l ) s  ¢, V ~ o ~ e = ( A - 1 ) 4 .  

Hence, [e, ~e] = 2{ and so ~(A) = 0. Moreover,  we also have 0 = ( V ~ p ) ( e , e )  = 

2Ae(a), 0 = (V~o~p)(~e, Te) = -2)~(~e)(a)  and this yields e(a) = (~pe)(a) = O, 

and hence also {(a) = 0. This  implies tha t  ~ and a are constant  on M.  

Next,  let (M, {, '1, ~, g) be locally homogeneous.  Then  it is analyt ic  and,  since 

the integral  curves of { are geodesics, [16] implies tha t  the manifold is locally 

qo-symmetric if and only if 

(5.1) 

(i) 

(ii) 

(iii) 

~((V[.%R)(~, , )~,  ¢) = 0, 

g((V[~+Jn)(~, v> ,  ~) = 0, 
v 2 k + I R  u u g(( ..... ) ( , ~ )  , ~ ) = 0 ,  

for all u, v, w E ker r/ and all k E N. Since dim M = 3, (2.9) holds and since 

a = 0, this implies tha t  (i) is satisfied for k = 0. Fur thermore ,  since r is constant ,  

we get f rom (2.9): 

( 5 . 2 )  
( % . . . v R ) ( x ,  v ) z  =g(x ,  z)(v~,...vO)Y - g(Y, z ) (v[ . . . vQ)x  

- g((Vev...vQ)Y, Z)X + g((V~...vQ)X, Z)V 

for all g C No. In par t icular ,  we have 

g ( ( v ~  n)(u ,v)u ,¢)  v 2~ v 2~ = g ~ u (  .... up ) ( ,  4) - g~.(v~...~p)(u, ~), 
2k+l - g ~ ( v  . . . . .  p ) ( ~ , u )  = g ~ ( V ~  ... .  p ) ( v , w )  2k+1 g((V ..... R)(~,v)u,w) 2k+1 

2k+l  2k+l  - g u ~ ( v  . . . . .  p) (~ ,  v) + g ~ ( v ~ . . . ~  p) (~ ,  ~), 
gllV'72k+l ~ 2 k + l  2k+l ~ .. . . .  R) (~, ~)u, ~) = ~ (  .... ~ p)(~,  ~) + 9 ~ ( v  . . . .  ~ p ) ( u , ~ ) .  

Hence,  it follows tha t  (i), (ii) and  (iii) are satisfied if 

(i)' 

(ii)' 

~ 2 k  V ( .... u p ) ( ,  ~) = 0, 
2~+1 2~+1 = (v~ . . .~  p)(4,  ~) 0, (v~. . .~p)( , ,~) = 

for all u, v, w E ker r / a n d  all k C No and g E N. 

To prove t ha t  (i)' and (ii)' hold, we have to consider the covariant  derivat ives 

of p of type  V~xl . . .x ,p  where Xi = ~ or Xi E ker~  for all g E No. To do this, we 
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choose a basis el = 4, e2 = e, e3 = ¢fle as before and denote by 0 1, 0 2, 0 a the dual 

basis. We introduce the following notations: 

a 1 = 0  ~®01, a 2 = 0  2 ® 0  2, a 3 = 0  3 ® 0  3 , a 4 = 0  2 ® 0  3 + 0  3 ® 0  2, 

fll = 01 ® 02 -}- 02 ® 01, 32 = 01 ® 03 -}- 03 ® 01, 

A =  s p a n { a l , a 2 , a 3 ,  a4},  B =  span{fl l , f l2}.  

Note that  since cr = 0, p E A. Furthermore, the one-forms V¢,0J are the dual 

forms of X7e, ej for i , j  = 1,2,3. They may be computed by using (2.8). Since 

a = 0 and A = const., we obtain 

VelO 1 : Ve202 : Ve303 : 0, 

V e t o  2 = --aO 3, V e t o  3 = aO 2, 

Ve201 = --(A -f- 1)03 , Ve203 = (A + 1)01 , 

~e301 = --(A -- 1)02, Ve302 = (A -- 1)01. 

Then, a straightforward computation yields 

V~ai ¢ A, V~flj E B, 

V~¢ai E B, V¢¢flj E A, 

for i -- 1 ,2 ,3,4 and j = 1,2. Equivalently, we have 

V~(A) c A ,  V~(B) c B ,  V~(A) C B ,  Vu(B) c A ,  

for all u E ker 7/- To proceed, we prove 

LEMMA 5.1: Let k be the number  of Xi E ker~/appearing in Vx~...x~p. Then 

Vxl...x~P E A (respectively B) if and only if k is even (respectively odd). 

Proof: Since p E A, the result holds for t~ = 0. Now, we proceed by induction 

and suppose that  the result holds for t?. Further, we have 

V ~+1 p - V e xx~...x~ V x(V~x~...x,p) t = ~VxX1X2. . . x~P . . . .  X1...VxX~P" 

Now, we treat  the cases X = 4 and X E ker 77 separately. 

(a) Suppose X = 4 and k even. The case k odd may be treated similarly. If 

X~ = 4, then V~Xi = 0 while for X~ e ker~ we have V~X~ E kerr/. Therefore 
• 

Vex1...x~_lVxX~X~+l_.x~p vamshes or belongs to A. Further, since Vx~...x~p E A 
v-7£+1 and V~(A) C A, we obtain V~(V~:l...x~p) E A and hence V~z~...z~ p E A. 
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(b) Now, let X E k e r r / a n d  let k be even. For Xi = ~ we have VxX~  E ker r/ 

while if X~ E kerr/, V x X i  is proport ional  to ~. The  rest follows now by proceeding 

as in (a). I 

Using this lemma,  we are now able to complete  the proof  of the theorem.  

Indeed,  let u E kerr/. Then  2k V~...~p E A. Since a i (v ,~ )  = 0 for v E kerr/, (i) '  

follows a t  once. Further ,  _~,...,,V2k+ln~ E B and, since ~j(v,w) = fij(¢,¢) = 0 for all 

v, w E kerr/, we get (ii)'. I 

To obta in  a second characterizat ion,  we consider contact  metr ic  manifolds 

whose characteristic vector field ~ belongs to the (k, #)-nullity distribution for 

some real numbers  k and #. This  means  tha t  the curvature  tensor  R satisfies 

(5.3) R(X,  Y)~ = k{r / (X)Y - r /(Y)X} + #{r/ (X)hY - r / (Y)hX} 

for all vector  fields X,  Y. Typical  examples  are unit  tangent  sphere bundles  of 

spaces of constant  curvature  and their  D-homothe t ic  t ransformed ones. We refer 

to [5], [9], [20] for more  details abou t  the geomet ry  of these spaces. 

Now, we prove 

THEOREM 5.2: Let M(~,  r/, (f, g) be a three-dimensional contact metric manifold. 

Then the following statements are equivalent: 

(i) ( M, ~, r/, (f, g) is locally (f-symmetric; 
(ii) T = 0 and r is constant or T ~ 0 and ~ belongs to the (k ,#) -nu l l i ty  

distribution. 

Proof'. For M = / / 2  the result is known and has a l ready been ment ioned before. 

Next,  we consider the case t h a t / g l  is non-empty.  

First ,  suppose  t ha t  the contact  metr ic  manifold is locally ( f -symmetr ic  and 

consider the  o r thonormal  basis el = 4, e 2  = e, e 3 = (fie. Pu t  X = Y~Xiei,  

Y = ~-~. Yiei. Using (2.9), (2.16), we then  obta in  

R ( X , Y ) ~  = r / ( X ) { ( p n  + P22 - )Y2e2 + (Pn + P33 - -  ~)Y3e3} 

r r 
--  r / ( Y ) { ( P l l  + P22 - ~ ) X 2 e 2  + ( P n  + P33 --  ~ ) X 3 e 3 } .  

On the o ther  hand,  we have 

(1 - A2){r/(X)Y - r / (Y)Z}  + 2a{11(X)hY - ~ (Y )hX}  

=r / (X){(1  - A2)Y + 2ahY} - r/(V){(1 - A2)X + 2ahX} 
r r 

=r / (X){ (P l l  -t- P22 - ~)Y2e2 A- (Pll + P33 - ~)V3e3} 

r r 
- r / ( Y ) { ( P l l  + P22 - ~ ) X 2 e 2  -~- ( P l l  ~'- P33 -- ~ ) X 3 e 3 } "  
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Hence, ~ belongs to the (k, #)-null i ty dis t r ibut ion for k = 1 - A 2 and  # = 2a. 

(k and # are cons tants  because of Theorem 5.1.) 

Conversely, let ~ E (k ,p)-nul l i ty  distr ibution.  Then  R ( X , Y ) ~  = 0 for 

X, Y E ker 7- In par t icular ,  we have 

~(e) = p(e, ~) = g (n (e ,  ~e)~, ~e) = O, 

~(~e)  = p(~e,  ~) = 9 ( R ( ~ ,  ~)~, e) = 0, 

and so ~ = O. Moreover,  

2(1 - A 2) = p(~,~) = R1212 + Rlala  = 2k 

f rom which it follows tha t  A is constant  on Ul, and hence M -- L/1. Fur thermore ,  

using these results and (2.15), a direct computa t ion  of R(X ,  Y)~ yields # = 2a 

and it follows tha t  a is also constant.  As already ment ioned at  several places, 

this implies t ha t  the  manifold is locally homogeneous and then the required result  

follows by using T h e o r e m  5.1. | 

Using T h e o r e m  3.5, Theorem 5.1, Theorem 5.2, and k = 1 - A 2, # = 2a, we 

obta in  

THEOREM 5.3: A non-Sasakian three-dimensional contact metric manifold such 

that its characteristic vector field belongs to the (k, #)-nullity distribution is 

locally isometric to a naturally reductive space if  and only if  p(#  + 4) -- - 4 k .  

We refer to [10] for fur ther  results abou t  ~o-symmetry in contact  metr ic  

geometry.  Fur thermore ,  in [9], it is proved tha t  for general  dimension,  any  

non-Sasakian  contac t  metr ic  manifold such tha t  its characteris t ic  vector  field 

belongs to the  (k, #)-nul l i ty  dis t r ibut ion is locally homogeneous and also locally 

~ - symmet r i c .  
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