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ABSTRACT
We study ball-homogeneity, curvature homogeneity, natural reductivity,
conformal flatness and -symmetry for three-dimensional contact metric
manifolds. Several classification results are given.

1. Introduction

A Riemannian manifold such that the volume of all sufficiently small geodesic
balls only depends on the radius is called a ball-homogeneous space [23]. Locally
homogeneous spaces are trivial examples and, up to now, no other examples are
known. This raises the question whether all ball-homogeneous spaces are locally
homogeneous or not. Several affirmative answers have been obtained for special
classes of manifolds but the general case remains open [12], [13], [14], [15]. Sur-
prisingly, even in dimension three, a general answer is not known. This motivates
the study of three-dimensional ball-homogeneous contact metric manifolds which
we start in this paper. In particular, we consider the class of contact metric
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manifolds for which the characteristic vector field is an eigenvector field of the
Ricei tensor. This is a condition which naturally appears in many problems and
examples. Based on the results about three-dimensional homogeneous contact
metric manifolds obtained in [28], we derive in Section 3 the classification of
the above mentioned class of spaces and show that this class is formed by the
spaces which are locally isometric to a unimodular Lie group equipped with a
left-invariant contact metric structure. We also show that ball-homogeneity may
be replaced by curvature homogeneity, that is, the eigenvalues of the Ricci tensor
are constant.

In Section 3, we also make a further study of these unimodular Lie groups to
determine which of them have a cyclic-parallel Ricci tensor. As a special case and
using the Webster scalar curvature, we determine the class of naturally reductive
ones.

Based on the derived formulas and results, we classify in Section 4 the
conformally flat three-dimensional contact metric manifolds satisfying the
already mentioned property for the characteristic vector field. This extends a
result obtained by Tanno in [31].

Finally, in Section 5, we determine all three-dimensional locally ¢-symmetric
spaces, that is, the contact metric spaces such that the reflections with respect
to the integral curves of the characteristic vector field are local isometries. This
completes a result of [28].

2. Preliminaries

In this section we collect some basic facts about contact metric manifolds. All
manifolds are assumed to be connected and smooth.

A (2n+1)-dimensional manifold M has an almost contact structure if it admits
a vector field £ (the characteristic field), a one-form 1 and a (1, 1)-tensor field ¢
satisfying

(2.1 n€) =1 ¢ =-id+n®¢

Then one can always find a Riemannian metric g which is compatible with the
structure, that is, such that

(2.2) g(pX,0Y) = g(X,Y) —n(X)n(Y)

for all vector fields X and Y. (§,7,¢,9) is called an almost contact metric
structure and (M, &,n,p,g) an almost contact metric manifold. If additionally
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dn(X,Y) = g(X, ¢Y) holds, then (M, &,7, ¢, g) is called a contact metric mani-
fold.

In what follows we denote by V the Levi Civita connection and by R the

corresponding Riemann curvature tensor given by
Rxy = Vixy;— [Vx,Vy]

for all smooth vector fields X,Y. p denotes the Ricci tensor of type (0,2) and Q
the corresponding endomorphism field. We denote the scalar curvature by r and

put 0 = p(&, ) kern-
On an almost contact metric manifold we have

(2.3) =0, noyp=0.
Moreover, if £ denotes the Lie differentiation, we denote by £ and h the operators

defined by
1
h = iﬁécp, X =R X)E T1=1Ley.

These (1, 1)-type tensors h and ¢ are symmetric and satisfy
(2.4) hE=0, =0, trh=0, trhe=0, hp=—ph,

and, moreover, we have

Vx€=—pX — phX,
Vep =0,
(2.5) tr £ = p(&,€) = 2n — tr A%,
ol — €= 2(p* + h?),
Veh =@ — ol — ph?.
This last relation appears in {6] and for all the other formulas we refer to [3],
where also more information may be found about contact geometry.
A contact metric space is said to be a K-contact manifold if £ is a Killing vector

field, that is, 7 = 0 or, equivalently, h = 0. Moreover, an almost contact metric
structure (£, 7, ¢, g) is called a Sasakian structure if and only if

(2.6) (Vxp)Y = g(X,Y) - n(Y)X.

Any Sasakian manifold is K-contact and the converse also holds when n = 1,
that is, for three-dimensional spaces.
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For a three-dimensional contact metric manifold, the Webster scalar curvature
W is given by [17]

(27) W= (= pl6,8) + ) = £+ 2+ LI,

The length |{7}| is the torsion invariant introduced in {17].

Next, let (M,£,7n,¢,9) be a three-dimensional contact metric manifold and
m a point of M. Then there exists a local orthonormal basis {{,e,pe} in a
neighborhood of m. Now, let U; be the open subset of M where h # 0 and let
U, be the open subset of points m € M such that h = 0 in a neighborhood of m.
U; U Uy is an open dense subset of M. On U; we put he = Ae and hence, from
(2.4), we have hpe = —Aype where A is a non-vanishing smooth function which
we suppose to be positive. Then we have

LEMMA 2.1: On U; we have

Vee = —ape, Vepe = ae,

Veg = _(A + 1)(1067 V&pef = _()\ - 1)87

Voo = o ()N +o(e)hoe, Ve = x{eN) + olpe)e,
Vege = —o5 {(0e) (V) + ole)}e + (A + D)6

Vet = —5-{e() + olpe)bpe + (A= 1E,

where a is a smooth function.

Proof: For any arbitrary three-dimensional contact metric space we have [32]
(Vxp)Y =g(X +hX,Y){ - n(Y)(X + hX)

for all vector fields X,Y. Putting X =e,Y = ¢ and X = ge,Y = ¢, we obtain
(Vep)e = —(A+1)e,  (Voe)d = (A = L)ge.

This yields
V€ = (A + e, PV e = —(A — L)pe

and hence, with (2.1), we get

Vel =—(A+1)pe, Vel =—(A—1)e.
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Next, we recall that the curvature tensor of a three-dimensional Riemannian

manifold satisfies
R(X,Y)Z =9(X,Z2)QY — g(Y,Z2)QX — g(QY, 2)X + 9(QX, Z)Y
(29 - (X, 2)¥ — g(¥, 2)X).

Putting X =e,Y = e, Z = £, we have

(2.10) R(e, pe)t = g(Qe, &)we — g(Que, §)e = a(e)pe — a(pe)e.

On the other hand, we have {27, Proposition 3.1,(i)]

(2.11) R(e, pe)€ = p(Veh)pe — p(Vyehe.
Now, by a straightforward computation and using V£ = 0, we get
Vee = —agpe, Vepe = ae,
(2.12) Ve = bye, Vepe = —be + (A + 1)¢,
Vsepe = ce, Vet = —cpe + (A — 1)E.

From (2.11) we then obtain
R(e,pe)é = {—2Xc+ e(A)}e + {270 — (we)(A) }pe
and, comparing this with (2.10), we have
200 = o(e) + (pe)(N), 2Xx¢ = o{we) + e(A).
Now, the required formulas (2.8) follow at once. |

“Next, we derive a useful formula for V¢A.

PROPOSITION 2.1: On U; we have

(2.13) Veh = 2ahp +£(N)s

where s is the (1,1)-type tensor defined by s€ = 0, se = e, spe = —ype.
Proof: Using (2.4), (2.5) and (2.8), we get

(Veh)e = 0 = (2ahp + E(N)s)E,

(Veh)e = —2adpe + (e = (2ahp + £(A)s)e,
(Veh)pe = —2ahe — £(X)pe = (2ahp + &(A)s)pe. ]

Note that (2.13) holds trivially on Uj since h = 0.
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Remark 2.1: V¢h = 0 implies a = £(A) = 0. In this case, the formulas (2.8) are
given in Proposition 3.1 of {18].

Finally, we note that it follows from [27] that the Ricci operator @ on a three-
dimensional contact metric space is given by

Q=0al+RE+Veh—o(@®) ®E+a(e)n® e+ a(pe)n @ pe
where
1 2 1 2
(2.14) a=§T—1+/\, ,6:—§T+3—3A.
Using (2.13), we get

(2.15) Q =al+n®&+2ah+E(A)ps — o(p?) @&+ o(e)n®@ e+ a(we)n @ pe,

and hence

Q€ = (a+ P+ ale)e + o(pe)pe,
(2.16) Qe = o(e)¢ + (a + 2ar)e + £(N)pe,
Que = o(we)é + E(N)e + (a — 2aX)pe.

Note that o = 0 if and only if £ is an eigenvector of Q.
Moreover, since 7(X,Y) = 2g(¢X,hY) [27], we have

(r+2(1+X))), A= Il

(2.17) W = =25

oo —

3. Ball- and curvature homogeneity, natural reductivity

In this section we consider different kinds of homogeneity and start with

Definition 3.1: A contact metric manifold (M,£,n,¢,g) is said to be homoge-
neous if there exists a connected Lie group of isometries acting transitively on M
and leaving 7 invariant. It is said to be locally homogeneous if the pseudogroup
of local isometries acts transitively on M and leaves i invariant.

Note that a three-dimensional locally homogeneous contact metric manifold is
locally isometric to a homogeneous one.

Homogeneous contact metric manifolds of dimension 3 have been studied in
[28] by using Milnor’s classification of Lie groups [24]. We recall the basic result.
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THEOREM 3.1: Let (M,&{,7n,¢,9) be a three-dimensional, simply connected,
homogeneous contact metric manifold. Then M is a Lie group and (n,g) is a
left-invariant contact metric structure. More precisely, we have the following
classification in terms of the Webster scalar curvature W and the torsion invari-
ant ||7||:
(1) If G is unimodular, then it is one of the following Lie groups:
- the Heisenberg group when W = ||7|| = 0;
- the 3-sphere group SU(2) when 4/2W > ||7||;
- the group E(2), that is, the universal covering of the group of rigid
motions of Euclidean 2-space, when 4v/2W = ||7|| > 0;
- the group §I:(2,R) when —||7|| # 4V2W < ||7|;
- the group E(1,1) of rigid motions of Minkowski 2-space when 4v/2W
= —||7|| < 0. Moreover, in all these cases we have o = 0.

(2) If G is non-unimodular, its Lie algebra is given by
le1, 2] = aer +2€, [e1,{] =ve2, [e2,€] =0,

where o # 0,e1,e3 = pe; € kern and 4v/2W < ||7||. Moreover, if
v = 0 (or equivalently, 0 = 0), then the structure is Sasakian and
W = —a?/4.

Note that it is proved in [21] that the non-unimodular Lie group satisfying o = 0
is isometric to a unimodular group SL(2, R). We also refer to [28] for the explicit
construction of homogeneous contact metric structures on these Lie groups.
Now, we turn to the consideration of ball-homogeneous contact metric spaces
of dimension 3 as mentioned in the Introduction. We note that ball-homogeneity
implies the constancy of an infinite number of scalar curvature invariants. See
for example [13]. In particular, 7 and [|p||?> must be constant. Now, we prove

THEOREM 3.2: A three-dimensional contact metric manifold (M,£,n,¢,g) is
locally isometric to a unimodular Lie group equipped with a left-invariant contact
metric structure if and only if it is ball-homgeneous and ¢ = 0.

Proof: The “only if” part follows from the local homogeneity of the manifold
and from Theorem 3.1.

To prove the “if” part, we first consider the case M = Uy, that is, (§,7, ¢, g)
is a Sasakian structure. Since 7 is constant, it then follows that M is locally
p-symmetric [34], and hence locally homogeneous [30]. The result then follows

again from Theorem 3.1.
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Next, assume that U is not empty and let {£, e, pe} be a basis as in Section
2. Since o = 0, (2.16) yields

Q¢ =2(1 - N*),
(3.1) Qe = (a+2ar)e + £(N) e,
Que = £(N)e + (a — 2a))pe.

Further, we have the well-known formula
1 n
(32) S X() = ;g«vei@ei, X)

for any vector field X and any n-dimensional Riemannian manifold. Here,

{ei,i = 1,...,n} is an arbitrary orthonormal basis. In our case, from (3.1),
(2.8), (2.5), we get

(VeQ)€ = — 4XE(N)8,
(Ve@)e =fe(a+202) ~ 1 (g} NEWN) e + (e(6N) + 2alpe)(V)}pe
F O+ DEWE,
(VoeQlpe ={(pe)(@ — 2a8) — 3 eVEN hpe +{(e) (EN) — 2ae(N)}e
+ - DENE

From these relations and (3.2) we then get

(33) €)= -2,

(34)  gelr) = el 2a3) = TEN)(pe) V) + (pe)EN) — 2ae(),
(35)  5(pe)(r) = (pe)la— 20) = TEN(N) + () + 2a(pe) (V).

Since r is constant and A # 0, (3.4) and (3.5) yield
(3.6) e(A) +e(a) =0, (pe)(A) — (pe)(a) = 0.

Next, we compute ||p]|?> from (2.16) taking into account that £(A) = 0 follows
from (3.3). We get

ol = 4(1 = X%)% +2(5 — 1+ X)" + 8a°X%,
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Since 7 and ||p||? are constant, we then get
(3.7) 6A* 4+ 2(r — 6)A? + 8a%A* = const.
Taking the derivative of (3.7) with respect to e yields
e(M{12X% +2(r — 6) — 8a\ + 8a’} =0
and this implies e{(}) = 0. Indeed, if e(A) # 0 in a neighborhood, we have
12X2 4+ 2(r —6) —8aA + 822 =0

and a new differentiation in the direction of e gives 4\ — 3¢ = 0. Deriving
once again and using (3.6) then gives e(A) = 0, which contradicts the hypothesis.
Using (3.6), we then get e(A) = e(a) = 0. A similar reasoning also gives (¢e)(A) =
(pe){a) = 0. Moreover, from (2.8) we get 2 = [e, we], and hence we obtain
£(a) = 0. All this implies that A and a are locally constant on U;. Since A
is continuous, we get from this that M = U;, and hence A and a are globally
constant.
So, from (2.8), we obtain

[6, QOGJ = Clgv [(pe? 6] = C2€, [57 e] = C3pe,

where ¢; = 2, ¢ =1 — A —a, c3 = A+ 1 — a are constants. From this we may
conclude that (M,&,7,¢,g) is locally isometric to a unimodular Lie group with
a left-invariant contact metric structure. See for example [33, p. 10] and [24] or
Theorem 3.1. 1

Remark 3.1: 'We note that the proof of Theorem 3.2 shows that if ¢ = 0 and
r = const., then {£, e, pe} is a basis of eigenvectors of Q on ;.

As already mentioned in the Introduction, a three-dimensional manifold is
curvature homogeneous if the eigenvalues of the Ricci operator Q are constant.
Then r and ||p||* are constant. The proof of Theorem 3.2 then shows the validity
of the following result.

THeoREM 3.3: Let (M,€,1,¢,9) be a three-dimensional contact metric
manifold. Then the following statements are equivalent:

(i) (M,&,m,,9) is locally isometric to a unimodular Lie group equipped with
a left-invariant contact metric structure;

(i1) (M, &, m,¢,g) is ball-homogeneous and o = 0;
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(i) (M, &,n, ¢, g) is curvature homogeneous and o = 0;
(iv) 0 = 0 and r and ||p||* are constant on (M, &,7, 0, g).

Note that the case ¢ = 0 and A constant, that is, £ is an eigenvector of () with
constant eigenvalue, has been treated in [20].

Now, we want to determine the naturally reductive three-dimensional contact
metric manifolds. Since natural reductivity implies that p is a Killing tensor,
that is, p is cyclic-parallel [22], we first consider this last condition and prove

THEOREM 3.4: Let (M,&,7n,p,9) be a three-dimensional contact metric mani-
fold. Then ¢ = 0 and p is cyclic-parallel if and only if the manifold is locally
isometric to a unimodular Lie group GG equipped with a left-invariant metric
structure and satisfying one of the following conditions:
(i) 7 =0 (that is, the structure is Sasakian). Then G is the Heisenberg group
Hj if W =0, SU(2) if W > 0 or SL(2,R) if W < 0;
(i) 7 # 0 and W = 1 + ||7]|/4v/2. In this case G = SU(2);
(i) 7 # 0 and W = 1 — ||7}|/4v2. Then G is SU(2) if ||7]| < 2v2, SL(2,R) if
7|l > 2v/2 or E(2) if ||7]| = 2v/2. (In this last case, g is a flat metric.)
Proof: First, assume ¢ = 0 and p cyclic-parallel. If 7 = 0, the structure is
Sasakian. Moreover, since p is cyclic-parallel, 7 is constant. Hence, (M, €, 7, ¢, g)
is locally homogeneous [30], [34]. So, Theorem 3.1 implies that M is locally
isometric to a Lie group equipped with a left-invariant contact metric structure.
More precisely, we have G = Heisenberg group H3 if W =0, G =SU(2) if W > 0
and G = SL(2,R) if W < 0.
Next, let U; be non-empty. From (2.15) and Remark 3.1 we then get £(A) =0
and Q = al + fn ® £ + 2ah on U; and, using (2.8), we obtain
(Vep)) (& e) =0, (Vep)(, we) =0,
(Vep)(,6) = —Are(N), (V4en)(E,€) = —4M(pe) V),
(Vep)(e,e) = (A +2ah),  (Veep)(pe, pe) = (pe)(A? — 2a)),
(Vep)(e,e) = 2X(a), (Vep)(e, &) =0.
Since p is cyclic-parallel, these relations yield
e(A) =0, (ve)(A) =0,
e(A2+2a)) =0, (pe)(\2 —2a)) =0,
&(a) = 0.
Hence, A and a are locally constant on U and, as in the proof of Theorem 3.2,

we get that (M, £, n, ¢, g) is locally isometric to a unimodular Lie group equipped
with a left-invariant contact metric structure.
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Now, we express that p is cyclic-parallel by using the Webster scalar curvature.
Therefore, we note that formula (5.2) of [26] yields

r=4(1- A?) + 2H,

where H = g(R{e, pe)e, pe) denotes the @-sectional curvature. But from (2.8)
we get, when o = 0 and A = const.,

R{e, pe)e = (A2 — 1 — 2a)pe,
and hence H = A? — 1 — 2q, which implies

(3.8) 2a=—g+1—/\2.

Furthermore, from (2.14), (2.15), (2.17) and (3.8) we then get
Q=202W — DI +[2—4W +2(1 - X\)]n® £ +2(1 — 2W)h.

It is now easy to check that the only non-vanishing components of Vp are given
by

(vfp)(67 pe) = —4A(1 — 2W)27

(vep)(§7 QD@) = 2(/\ + 1)2(2W -2+ )‘)5

(Vep) (€,€) = 202 — 1)*(—2W + A +2).

Hence, if p is cyclic-parallel, we have 2W = 2 + A. Then, from Theorem 3.1 we
get the required results concerning the group G.

To finish the proof, we show the existence of these left-invariant contact metric
structures on Hj, SU(2), éi(2,R) and E(2) satisfying the conditions for W and
||7]}. To see this, we note that the Lie algebra for these groups has the form

le2,e3] = Arey, [es,e1] = Agea, [er,ea] = Ases,

where A1, Az, A3 are constants {24]. Let {6*,62,6%} be the dual basis of {e1, e3,e3}.
Then df* = ~X;6% A 6 and hence, if A\; # 0, n = @' is a contact form. For
A1 = 2, the Riemannian metric defined by g(e;,e;) = d;;, 4,5 = 1,2, 3, satisfies
dn = g(-,¢-) where ¢ is defined by pe; = 0,pes = e3,p0e3 = —e3. So, g is a
compatible metric. Moreover, we have [28]

_/\2+/\3

2w
2 h

7]l = V2(X3 = Xa).
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Following Milnor’s classification (see also Theorem 3.1), the cases As = A3, Ay =
A1 = 2 and A3 = A; = 2 correspond to (i), (ii) and (iii), respectively. This
completes the proof. 1

In [1], it has been proved that a locally homogeneous three-dimensional
Riemannian manifold with cyclic-parallel Ricci tensor is locally isometric to a
naturally reductive homogeneous space. Hence, it follows from Theorem 3.4 that
a three-dimensional contact metric space with cyclic-parallel Ricei tensor and
o = 0 is locally isometric to a naturally reductive space. Using the Webster
scalar curvature, we have the following more specific result.

THeEOREM 3.5: Let (M,€,7,0,9) be a three-dimensional, simply connected,
complete contact metric manifold. Then we have
(i) if 7 = 0, then (M,&,n,¢,9) is naturally reductive if and only if W is
constant;
(ii) if T # 0, then (M, &,m,p,9) is naturally reductive if and only if o = 0 and
W =1+ |7||/4¥/2 = constant.
If (M, €,7m,¢,9) is not simply connected or complete, then “naturally reductive”
has to be replaced by “locally isometric to a naturally reductive space”.

Proof- First, let 7 = 0, that is, the structure is Sasakian. Then 8W = r 4 2.
Hence, W is constant if and only if the scalar curvature is constant. I r is
constant, then the manifold is locally g-symmetric and hence locally isometric
to a naturally reductive space [8]. The converse is trivial.

Next, let 7 # 0. If (M, £, 1, ¢, g) is naturally reductive, then p is cyclic-parallel.
Moreover, it follows from [2] that ¢ = 0. The value of W then follows from
Theorern 3.4. Conversely, let ¢ = 0 and W = 1 % ||7{|/4V2 = constant. (2.17)
implies that X is constant, and hence, also r. Furthermore, (3.8) implies that a
is constant. Now, as in the proof of Theorem 3.2, it follows that the manifold is
a homogeneous contact metric space and then the result follows from Theorem
34. 1

4. Conformally flat contact metric manifolds

In [31], Tanno proved that a conformally flat K-contact space has constant
sectional curvature +1. See [25] for the Sasakian case and dimension > 5. On
the other hand, it is shown in [4] that there exist three-dimensional conformally
flat contact metric spaces which are not real space forms. Now we show that this

cannot occur when o = 0.
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THEOREM 4.1: A three-dimensional conformally flat contact metric space with
o = 0 has constant sectional curvature 0 or 1.

Proof: First, let M = U,. Then the result follows from Tanno’s work [31].

Next, suppose U; is not empty. In what follows we shall show that A and a are
constant. It then follows again that the manifold is locally homogeneous. Since
it is conformally flat, it must be locally symmetric [29]. Then the result follows
from [7].

To prove that A and a are constant, we take the usual basis {£, e, pe} and put
e1 =&, e2 = e, e3 = pe. Using the notational convention p;; = p(e;, e;), Vipji =
(Ve,p){ej, er), a straightforward computation then yields

Vipn = —4A()),
Vipiz = Vip13 =0,
Vipaz = &(p22) + 2apas,
Vipss = &(p3s) — 2apas,
Vap11 = e(pn1),

Vapiz = (1 + A)pas,

Vap1z = (1 + A)(ps3 — p11),
4.1 1
(4.1) Vapsz = e(p33) + X(W)(A)st,

Vapas = e(pa3) + 2a(pe)(A),

Vsp11 = (pe)(p11),

Vip1z = (1 = A)(p11 + pa2),
Vip1z = (A = 1)pas,

Vapaz = (ipe) (o) + 3e(Vpas,

V3pas = (pe)(p23) — 2ae(A).
We shall also use extensively the components p;; given by (2.16).
Now, since (M, g) is conformally flat, we have

1 ..
(4.2) Vipi; — Vjpi = Z(fsijvkr — 0 Vir), i, J,k =1,2,3.
Hence, from (4.1) and (4.2) we get
1
55(7") = &(paz) + (22 ~ A — 1) pa3,

(43 3E0) = E(pss) + (1 -~ 20)ps,
2011 = (1 — A)paz + (1 + A)pss.
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From these relations, we obtain

§(paz — p33) = 2(1 — 2a)pq3,

(4.4) X
§(P22 + p33) = 2\pa3 + 55(7)

Hence, we have

&(r) = &(p11 + p22 + p33) = E(p11) + 2Ap23 + %5(7’)-

Using (2.16), we then get &(r) = —4M(A) = &(p11). Hence, £(p22 + pas) = 0.
Now, we derive (4.3) with respect to £ and use (4.4) to get £(p11) = —AE(A).
This yields £(A) = 0, and hence we have £(r) = &(p11) = &(p22) = &(ps3) = 0.
Since 0 = £(pa2) = &(a + 2aX) = 2Xé(a), we also get £(a) = 0.

Further, from Vap1; — Vip1g = %Vgr we get
1
—e

(4.5) elpin) = 7

(r)

and from Vspe3 — V3po3 = ngr we obtain, taking into account that £(\) =
p23 = 07

1

Ze(r) = e(ps3) + 2ae{A)

_ %e(r) +2)e()) — 22e(a),
and so )
Ze(r) = 2X{e(a) —e(A)}.
But with (4.5) we have 1e(r) = e(p11) = —4Xe(A), and hence e(A) + e(a) = 0.
Next, from (4.3) we obtain

7= %(3 — A)pag + %(3 + A)pas.
Derive this with respect to e. This gives
e(r) = —4X(2a — Ne(N)
which, together with fe(r) = —4Xe(}), yields

(2a — A —4)e(A) =0.
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From this it follows that e(A) = 0. Indeed, for e()\) # 0 in a neighborhood, we
get A = 2a — 4 and differentiation then gives e(A\) = G, which is a contradiction.
So, we must have e(A\) = e(a) = 0.

In a similar way and using Vsp11 — Vipiz = §Var and Vgpaga —Vapas = 1 Var,
we get (pe)(A) = (pe)(a) = 0.

All this implies that A and a are constant and this completes the proof. |

It is well-known that the Ricci tensor of a three-dimensional manifold is a
Codazzi tensor if and ouly if it is conformally flat and has constant scalar curva-
ture (see (4.2)). Hence, from Theorem 4.1, we obtain at once

THEOREM 4.2: A three-dimensional contact metric space with ¢ = 0, and such
that its Ricci tensor is a Codazzi tensor, has constant sectional curvature 0 or 1.

5. Three-dimensional locally p-symmetric spaces

For a Sasakian or a K-contact manifold, local symmetry implies that the manifold
has constant curvature 1 [25], [31]. For this reason, locally o-symmetric spaces
have been introduced in [30] and, in [8], it has been shown that they may be
defined as Sasakian manifolds such that the local reflections with respect to the
integral curves of the characteristic vector field are isometries. Many examples
are known and their classification has been treated in [19]. Using this property
as definition, locally ¢-symmetric spaces have also been introduced for contact
metric spaces in [11]. In this section we shall derive two new characterizations
for the three-dimensional contact metric case.
First, we have

THEOREM 5.1: A three-dimensional contact metric manifold (M,€,m,p,g) is
locally p-symmetric if and only if it is locally homogeneous and o = 0.

Proof: First, suppose that the manifold is Sasakian. Then the result is well-
known [30], [34].

Next, suppose that the contact metric structure on M is not Sasakian and let
M be locally @-symmetric. Since the local reflections are isometries, we have
p(&,u) =0 for any u € ker7, and hence o = 0. Moreover, we must also have

Vur =0,
(Vup)(u,u) =0,
(Vup)(€,6) = 0.

Now, we show that this implies that A and a, for the usual basis {£, e, pe} on U,
are constant. This implies the local homogeneity.
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First, we have 0 = (Vp)(§,€) = —4Xe(A) and so e(A) = 0. Similarly,
(Vpep)(&,€) = 0 implies (we)(A) = 0. This, (2.8) and o = 0 give

Vepe = (A+1)¢, Vgee=(A—-1)¢

Hence, [e, ge] = 2€ and so £(A} = 0. Moreover, we also have 0 = (V.p)(e,e) =
2Xe(a), 0 = (Vyep)(pe, pe) = —2X(pe){a) and this yields e(a) = (pe)(a) = 0,
and hence also £(a) = 0. This implies that A and a are constant on M.

Next, let (M, €&,n, ¢, g) be locally homogeneous. Then it is analytic and, since
the integral curves of ¢ are geodesics, [16] implies that the manifold is locally
p-symmetric if and only if

G g((VZ L R)(u,v)u,8) =0,
(5.1) (i)  g(VEHIR)(u,v)u,w) =0,
(i)  g((VIFEIR)(u,&)u,€) =0,

for all u,v,w € ker  and all £ € N. Since dim M = 3, (2.9) holds and since
o = 0, this implies that (i) is satisfied for k = 0. Furthermore, since r is constant,
we get from (2.9):

(VV. vRY(X,Y)Z =g(X,Z)(Vy vQ)Y —g(Y,2)(V5 vQ)X

(52) 3 4
—9((Vv._vQ)Y, 2)X +9((Vy _vQ@)X, 2)Y

for all £ € Ny. In particular, we have

g(VZF L R)(u,0)u,€) =guu(VEE 1p)(,8) — guu(VEE 0)(u,€),
g(VZEHIR) (u, v)u, w) =guu(Var )l p) (v, w) = guo (VEERL ) (1, )
- guw(vi{cjrulp) (u’ U) + ng(vi{cﬁ}p) (u7 u)a
g(VEEHIR) (u, €)u, £) =guu(VIF1 0)(€,8) + 9ee (VI p) (w, ).

Hence, it follows that (i), (ii) and (iii) are satisfied if

W (VW€ =0,
(i) (VI (v,w) = (VEHLp)(£,€) = 0,
for all u,v,w € ker n and all k € Ny and £ € N.

To prove that (i)’ and (ii)’ hold, we have to consider the covariant derivatives
of p of type Vg{l...xgp where X; = ¢ or X; € kern for all £ € Ny. To do this, we
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choose a basis e = &, e3 = e, e3 = pe as before and denote by 81,62, 62 the dual
basis. We introduce the following notations:

a1 =0"®0", w=0R60F a=006, a=60"0+0c86°
Bi=0"002+0°®0", B=0'00+0°x06",
A= Span{alva27a37a4}1 B = Span{ﬂlaﬁZ}'
Note that since ¢ = 0, p € A. Furthermore, the one-forms V. 07 are the dual
forms of V. e; for 4,5 = 1,2,3. They may be computed by using (2.8). Since
o =0 and A = const., we obtain
Ve, 0 = V02 =V..0° =0,
Ve, 0? = —af?, V. 0°=ab?
Ve,0' = ~(A+1)83, V0% =(\+1)8,
Ve, 0' = —(A—1)6?, V0% =(A-1)8".
Then, a straightforward computation yields
Vga,- € A, Vgﬂj € B,
Ve € B, Veﬁj €A,
Vee; € B, VoeeBi € A,

for i =1,2,3,4 and 7 = 1,2. Equivalently, we have

Ve(A)C A, VeB)CB, V., (A)CB, VB CA

k)

for all u € ker 7. To proceed, we prove

LEMMA 5.1: Let k be the number of X; € kern appearing in v%{y..Xgp' Then
V... .x,P € A (respectively B) if and only if k is even (respectively odd).

Proof: Since p € A, the result holds for £ = 0. Now, we proceed by induction
and suppose that the result holds for £. Further, we have
Vg&l..‘xei’ = VX(Vgg...le) - V%xxlxz...xlp' T vg(l...Vxsz'
Now, we treat the cases X = £ and X € ker 7 separately.
(a) Suppose X = ¢ and k even. The case k odd may be treated similarly. If
X; = ¢, then V¢ X; = 0 while for X; € kern we have V¢X; € kern. Therefore
Vg(l...xi_NxX,-XiH..-sz vanishes or belongs to A. Further, since Vg(lmxzp cA

and V¢(A4) C A, we obtain V¢(V%, , p) € A and hence Vé}lli_.xlp € A
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(b) Now, let X € kern and let k be even. For X; = £ we have Vx X, € ker g
while if X; € kern, Vx X, is proportional to £. The rest follows now by proceeding
as in (a). 1

Using this lemma, we are now able to complete the proof of the theorem.
Indeed, let u € kern. Then V2 p € A. Since a;(v,€) = 0 for v € kern, (i)
follows at once. Further, VZ**1, € B and, since 8;(v,w) = §;(£,€) = 0 for all
v,w € kern, we get (ii)'. 1

To obtain a second characterization, we consider contact metric manifolds
whose characteristic vector field £ belongs to the (k, u)-nullity distribution for
some real numbers & and yx. This means that the curvature tensor R satisfies

(5.3) R(X,Y)¢ = k{n(X)Y = n(Y) X} + p{n(X)hY — n(Y)}hX}

for all vector fields X,Y. Typical examples are unit tangent sphere bundles of
spaces of constant curvature and their D-homothetic transformed ones. We refer
to [5], [9], [20] for more details about the geometry of these spaces.

Now, we prove

THEOREM 5.2: Let M(&,n,,g) be a three-dimensional contact metric manifold.
Then the following statements are equivalent:

(1) (M, &,n,,9) is locally p-symmetric;

(ii) 7 = 0 and r is constant or T # 0 and £ belongs to the (k,p)-nullity
distribution.

Proof: For M = U, the result is known and has already been mentioned before.
Next, we consider the case that U is non-empty.

First, suppose that the contact metric manifold is locally p-symmetric and
consider the orthonormal basis e; = &, es = e, e3 = pe. Put X = > Xie,,
Y =3 Ye;. Using (2.9), (2.16), we then obtain

R(X, Y )¢ =n(X){(puy + pz2 = 5)¥aea + (o + pss — 5)¥ses)
—n(YH{(p11 + p22 — g)Xzeg + (p11 + p3s — g)X;;eg}.
On the other hand, we have
(1= X){n(X)Y —n(Y)X} + 2a{n(X)AY —n(Y)hX}
=n(X)}{(1 = A)Y + 2ahY} - p(Y){(1 - A\ X + 2ahX}
=n(X}{(p11 + p2z — 2)5’262 + (11 + p33 — %)Y353}

T T
= n(Y){(p11 + p2z — é)Xzez + (P11 + P33 — §)X363}.
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Hence, ¢ belongs to the (k, u)-nullity distribution for ¥ = 1 — A% and p = 2a.
(k and p are constants because of Theorem 5.1.)

Conversely, let & € (k,p)-nullity distribution. Then R(X,Y){ = 0 for
X,Y € kery. In particular, we have

o(e) = ple, &) = g(R(e, pe)§, pe) = 0,
a(we) = p(pe, &) = g(R(pe,e)¢,e) =0,

and so o = 0. Moreover,
2(1 — M%) = p(&,€) = Riz12 + Riz13 = 2k

from which it follows that A is constant on Uy, and hence M = Uf;. Furthermore,
using these results and (2.15), a direct computation of R(X,Y)¢ yields u = 2a
and it follows that a is also constant. As already mentioned at several places,
this implies that the manifold is locally homogeneous and then the required result
follows by using Theorem 5.1. ]

Using Theorem 3.5, Theorem 5.1, Theorem 5.2, and k = 1 — A2, y = 2a, we
obtain

THEOREM 5.3: A non-Sasakian three-dimensional contact metric manifold such
that its characteristic vector field belongs to the (k,u)-nullity distribution is
locally isometric to a naturally reductive space if and only if pu(u + 4) = —4k.

We refer to [10] for further results about ¢-symmetry in contact metric
geometry. Furthermore, in [9], it is proved that for general dimension, any
non-Sasakian contact metric manifold such that its characteristic vector field
belongs to the (k, u)-nullity distribution is locally homogeneous and also locally
p-symimetric.
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